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Abstract. Analyzing the dilepton production from out of equilibrium quark-gluon plasma, Le Bellac and
Mabilat have recently pointed out that, in the reaction rate, the cancellation of mass (collinear) singu-
larities takes place only in physical gauges, and not in covariant gauges. They then have estimated the
contribution involving pinching singularities. After giving a general argument for the gauge independence
of the production rate, we explicitly confirm the gauge independence of the mass-singular part. The con-
tribution involving pinching singularities develops mass singularities, which is also gauge dependent. This
“additional” contribution to the singular part is responsible for the gauge independence of the “total”
singular part.

In the past years, much effort has been made to incor-
porate quantum field theory with nonequilibrium statis-
tical mechanics, among which, we quote those of Altherr
and Seibert [1], Altherr [2], Baier et al. [3], Le Bellac and
Mabilat [4] and the present author [5]. Out of equilib-
rium, pinching singularities appear [1] in association with
self-energy inserted propagator. It has been shown in [2]
that resummation of self-energy part eliminates the pinch-
ing singularity (see also [6]). An application of this result
to the rate of hard-photon production from nonequilib-
rium quark-gluon plasmas is made in [3]. A renormaliza-
tion scheme of number density is introduced in [5], such
that the pinching singularities disappear. Le Bellac and
Mabilat [4] are the first who have explicitly analyzed the
infrared and mass (collinear) singularities in “lepton-pair”
production rate.

First of all, let us summarize the results of [4]. The pro-
duction rate of a lepton pair from a quark-gluon plasma is
proportional to Π(Q) ≡ −iΠ12(Q), where Π12(Q) is the
(1, 2)-component of the photon self-energy part in real-
time massless QCD. Following [4], we deal with Π(Q)
of a scalar “photon.” To two-loop order, Π(Q) receives
two contributions. The one ΠΣ comes from the diagram
with self-energy inserted quark propagator and the one
ΠV comes from the diagram with photon-quark vertex
correction,

Π(Q) = ΠV (Q) + ΠΣ(Q) (1)

ΠΣ(Q) = 2ie2
∫

d 4P

(2π)4

2∑
j, l=1

Tr [S1j(P )Σjl(P )

·Sl2(P )S21(P − Q)] (2)

ΠV (Q) = −4
3
e2g2

∫
d 4P

(2π)4

∫
d 4K

(2π)4
g(gauge)

µν (K)

·
2∑

j, l=1

(−)j+lTr [S1j(P − K)γµSj2(P )

·S2l(P − Q)γνSl1(P − Q − K)]∆lj(K) (3)

where

Σjl(P ) = i
4
3
g2(−)j+l

∫
d 4K

(2π)4
g(gauge)

µν (K)

·γµSjl(P − K)γν∆jl(K) (4)

The (part of the) gluon propagator ∆lj(K) takes the form
[4]

∆11(K) = ∆∗
22(K) = (1 + f(K))∆R(K) + f(K)∆A(K)

∆12(K) = f(K)(∆R(K) + ∆A(K))
∆21(K) = (1 + f(K))(∆R(K) + ∆A(K)) (5)

where

∆R(A)(K) = ±i/(K2 ± iηε(k0)) (η = 0+) (6)

The quark propagator Slj(K) takes the form Slj(K) =
K/ ∆̃lj(K), where ∆̃lj(K) is given by (5) with the substitu-
tion f → −f̃ . f (f̃) is related to the distribution function
of gluon n (quark ñ) through

f(K) = −θ(−k0) + ε(k0) n(|k0|, ε(k0)k̂)

f̃(K) = θ(−k0) + ε(k0)ñ(|k0|, ε(k0)k̂) (7)

where k̂ = k/k with k = |k|. Form of g
(gauge)
µν (K) in (3)

and (4) depends on the gauge choice:

g(cov)
µν (K) = gµν − α

KµKν

K2 (covariant gauge) (8)
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g(t)
µν (K) = gµν − k0

k2 (Kµnν + nµKν) +
KµKν

k2

(Coulomb gauge) (9)

where nµ = (1,0). Observe that [4], in (2),

2∑
j, l=1

S1j(P )Σjl(P )Sl2(P ) = F (n)(P ) + F (p)(P ) (10)

F (n)(P ) = −f̃(P )(∆2
R(P ) − ∆2

A(P ))P/ ReΣ11(P )P/

− 1
2
f̃(P )(∆2

R(P ) + ∆2
A(P ))P/

· (Σ12(P ) − Σ21(P ))P/ (11)

F (p)(P ) = ∆R(P )∆A(P )P/

· [(1 − f̃(P ))Σ12(P ) + f̃(P )Σ21(P )]P/ (12)

F (n) is the “normal term,” which is the counterpart of
the one that is present in equilibrium thermal field the-
ory (ETFT), while F (p) is the “pinch term,” which is ab-
sent in ETFT. The last fact is due to the detailed-balance
formula, which states that the ETFT counterpart of the
quantity in the square brackets in (12) vanishes. In fact, as
seen from (6), ∆R(P ) [∆A(P )] has poles at p0 = ±p − iη
[p0 = ±p + iη] in a complex p0-plane, so that the integra-
tion contour −∞ < p0 < +∞ in (2) with (12) is pinched
by the poles of ∆R(P )∆A(P ). Substituting (10) - (12) into
(2), we have

ΠΣ(Q) = Π
(n)
Σ (Q) + Π

(p)
Σ (Q)

Π
(n)/(p)
Σ (Q)

= 2ie2
∫

d 4P

(2π)4
Tr

[
F (n)/(p)(P )S21(P − Q)

]
(13)

Le Bellac and Mabilat [4] have shown that, in Coulomb
gauge, the mass singularities cancel out both in Π

(n)
Σ (Q)

and ΠV (Q), (3). While, in the covariant gauge, the can-
cellation holds only for Π

(n)
Σ (Q), and in ΠV (Q) there sur-

vives mass singularity. Then, the authors of [4] have con-
cluded that whether or not the singularity cancellation
takes place is gauge dependent. [In Appendix A, we show
in a gauge-independent manner how the cancellations of
mass singularities take place in Π

(n)
Σ (Q), reconfirming the

result of [4].]
We first verify that Π(Q), (1), is gauge independent.

Proof goes just as in vacuum (T = 0) theory. Consider the
difference

δΠ(Q) ≡ Π(Q)
covariant

− Π(Q)
Cou

(14)

where “Cou” stands for Coulomb. Observe that, from (8)
and (9), the difference g

(cov)
µν (K) − g

(t)
µν (K) is proportional

to Kµ and/or Kν . Then, in evaluating δΠ(Q), we can use
Ward-Takahashi relation,

Sjk(P − K)K/Skl(P ) = −i(−)kδklSjk(P − K)

+i(−)jδjkSkl(P )

with no summation over repeated indices. After doing this,
we see that, among many terms in the resultant expression
for δΠ(Q), complete cancellations occur, so that δΠ(Q)
vanishes and then is, of course, free from mass singulari-
ties.

On the light of the above observation, let us make
a closer inspection of the results of [4]. As a covariant
gauge, as in [4], we take the Feynman gauge (α = 0
in (8)) throughout in the sequel. We analyze Π

(p)
Σ (Q) in

(13) with (12). Observe first that F (p)(P ) ∈ Π
(p)
Σ (Q) in-

volves Σ12(21)(P ). Then, (4) tells us that Π
(p)
Σ (Q) contain

S12(21)(P − K) and ∆12(21)(K), which are proportional
to δ((P − K)2) and δ(K2), respectively. Thus, we have
(P − K)2 = K2 = 0. From Π

(p)
Σ (Q) let us pick out a

piece Gµν ≡ P/γµ(P/ −K/ )γνP/ (cf. (13) with (12) and (4)).
Simple algebra yields

gµν Gµν = −2P 2K/ (15)

δgµν Gµν = 2P 2 k0

k2

[
(2p0 − k0)P/ − p0K/

]
+O((P 2)2) (16)

where δgµν ≡ gµν − g
(t)
µν (K). Thus, both gµνGµν and

δgµνGµν are proportional to P 2. Then, within Π
(p)
Σ (Q),

∆R(P )∆A(P ) in (12) appears in a form

P 2∆R(P )∆A(P ) = P 2 i

P 2 + iηε(p0)
−i

P 2 − iηε(p0)

=
P 2

(P 2)2 + η2 =
P
P 2 (17)

This means that the pinching singularity in the “pinch”
term F (p), (12), turns out to be a mass singularity. In
fact, from the above observation leading to (15), we see
that Σ12(21)(P )(P/P 2) 3 δ((P − K)2)δ(K2)(P/P 2), the
well-known combination which leads to a mass-singular
contribution. The (P 2)2 term in (16) does not lead to
mass-singular contribution. As in [4], let us restrict our
concern to singular contributions and ignore the (P 2)2
term.

As far as mass-singular contributions are concerned,
above observation on the gauge independence of Π(Q),
i.e., δΠ(Q) = 0, together with [4] Π

(n), sing
Σ

∣∣∣
Cou

=

Π sing
V Cou

= Π
(n), sing
Σ Fey

= 0, tells us that Π sing
V Fey

=

−δΠ
(p), sing
Σ , where “Fey” stands for Feynman. Π sing

V Fey
with Q = (q0,q = 0) is explicitly evaluated in [4]. As a
check, in Appendix B, we evaluate δΠ

(p), sing
Σ (q0,0) and

confirm1 δΠ
(p), sing
Σ = −Π sing

V Fey
.

The singular part of Π(q0 ≡ 2κ,0), being gauge inde-
pendent, is also evaluated in Appendix B,

Π sing = Π
(p), sing
Σ

Cou
= Π sing

V
Fey

+ Π
(p), sing
Σ

Fey

1 There is a missing term in ΠV
Fey

in [4] (see Appendix B).
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= − 32
3π

ααsκ
2 ln

1
εy

·
∫

dΩk̂

4π
ñ(κ, k̂)ñ(κ, −k̂)

[∫ 1

εz

dz
(z − 1)2 + 1

2z

+
∫ ∞

0
dz

z2 + 2
z

n(κz, k̂)

+
∫ ∞

0
dz P

z(z2 + 1)
z2 − 1

ñ(κz, k̂)
]

+
16
3π

ααsκ
2 ln

1
εy

·
∫

dΩk̂

4π
ñ(κ, −k̂)

[∫ 1

εz

dz
(z − 1)2 + 1

z

·n(κz, k̂)ñ(κ(1 − z), k̂)

+
∫ ∞

1
dz

(z − 1)2 + 1
z

·n(κz, k̂)(1 − ñ(κ(z − 1), k̂)

+
∫ ∞

εz

dz
(z + 1)2 + 1

z

·(1 + n(κz, k̂))ñ(κ(1 + z), k̂)
]

(18)

Here dΩk̂ is an element of the solid angle in a k-space.
The cutoff factor εy is defined by 1−|p̂ · k̂| ≥ εy (cf. (B.1)
in Appendix B) and εz is the infrared cutoff k ≥ εzκ.

Let us clarify the relation between the present result
and the result of [4]. We start with picking out from
F (p)(P ) in (12),

Σ(P ) ≡ (1 − f̃(P ))Σ12(P ) + f̃(P )Σ21(P ) (19)

For the purpose of estimating Π
(p)
Σ , Le Bellac and Ma-

bilat [4] have analyzed Σ(P ) within the hard-thermal-
loop resummation scheme. The net production rate of an
(anti)quark is given by Γ (P ) = Tr[iΣ(P )P/ ]/(4p), with
P = (p,p) for quark and P = (−p, −p) for antiquark.
Arguing that Γ (P ) on the mass shell P 2 = 0, being gauge
independent, is relevant to ΠΣ(Q), the authors of [4] have
concluded that Π(Q) is gauge dependent since Π sing(Q)
is. It is clear from the above argument that this is not
the case. As has been discussed above in conjunction with
(16), P/ δΣ(P )P/ (as well as P/Σ(P )P/

Fey
) vanishes on the

mass shell P 2 = 0. [As a matter of fact Σ12(21)(P ) in
(19) vanishes on the mass shell P 2 = 0, since P 2, K2 and
(P − K)2 cannot vanish simultaneously.] However, as has
been observed in (17), in calculating δF (p) ≡ F (p)

Fey
−

F (p)
Cou

(cf. (12)), the factor P 2, (16), “eliminates” one

∆ and the mass-singular contribution δΠ
(p), sing
Σ (as well

as Π
(p), sing
Σ Fey

) emerges. Thus we have learned that the
mass-singular contribution does not come from the gauge-
independent quantity,

P/Σ(P )P/
P 2 = 0

= −2ipΓ (P )P/
P 2 = 0

(= 0)

but comes from the gauge-dependent quantity

dP/Σ(P )P//dP 2

P 2 = 0
= P/Σ(P )P//P 2

P 2 = 0

The observation made above in conjunction with (16)
applies to the contribution (to δF (p)) from the soft-K re-
gion (cf. (13) with (12) and (4)), in which K2 6= 0. [The
soft (P − K)-region is not important, at least, for the
system, which is not far from thermal and chemical equi-
librium.] Above observation on δΠ

(p), sing
Σ holds as it is,

except that Σ12(21)(P ) does not vanish on the mass shell.
It is to be noted in passing that Π

(p)
Σ Fey

develops pinch

singularity. This is because, in the present case, K2 6= 0,
we have, in place of (15), gµνGµν = −2P 2K/ + 2K2P/ .
The second term on the right-hand side leads to pinch-
ing singularity in Π

(p)
Σ . Because of the factor K2, which

is small, the “residue” of the pinching contribution is rel-
atively small.
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Appendix A: Absence of mass singularity
in Π

(n)
Σ (Q)

In this Appendix, we show that Π
(n)
Σ (Q) is free from mass

singularities, reconfirming the result in [4]. Manipulation
goes as follows. Substitute F (n), (11) with (4), into (13).
Use the form of g

(gauge)
µν , (8) or (9), and forms for ∆lj and

Slj (cf. (5)). The resultant expressions may be rearranged
as

Π
(n)
Σ =

8
3π2 ααs

∫
d 4P

2π

∫
d 4K

2π
Tr

[Gµν(P/ − Q/ )
]

·ĝ(gauge)
µν f̃(P )(1 − f̃(P − Q))δε((P − Q)2)

·
[(

1
2

+ f(K)
)

δε(K2)
(
∆2

R(P )∆R(P − K)

+∆2
A(P )∆A(P − K)

)

+
(

1
2

− f̃(P − K)
)

δε((P − K)2)

· (∆2
R(P )∆R(K) + ∆2

A(P )∆A(K)
)]

(A.1)

where Gµν is as in (15) and δε(k2) ≡ ε(k0)δ(K2), etc.
For the Coulomb gauge, ĝ

(gauge)
µν = g

(t)
µν , (9). For the co-

variant gauge, ĝ
(gauge)
µν = gµν + ηKµKν(∂/∂K2), where

∂/∂K2 applies to δ(K2), ∆R(K) and ∆A(K). Equation
(A.1) is manifestly free from mass singularities. Mass sin-
gularity arises from the terms ∆2

R(A)(P )∆A(R)(P −K) and
∆2

R(A)(P )∆A(R)(K). In obtaining (A.1), cancellations oc-
cur between those terms.
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It is also obvious from (A.1) that Π
(n)
Σ is free from

divergence due to infrared singularities, provided that, as
k → 0+, f(K) and f̃(K) in (7) meet f(k, k̂) ∝ k−n with
n < 2 and f̃(k, k̂) ∝ k−n′

with n′ < 2. In actual compu-
tation of Π, for a propagator with soft momentum, one
should use hard-thermal-loop resummed effective one.

Appendix B: Computation of the singular part
of Π

(p)
Σ (Q)

Here, we compute the singular part of the “pinch” con-
tribution Π

(p)
Σ (q0,q = 0). Substituting (12) with (4) into

(13) and using (15) and (16), and the forms for ∆lj and
Slj , we have

Π
(p), sing
Σ = −128

3π
ααsQ

2
∫

d 4P

2π

∫
d 4K

2π
G(gauge)

·(1 − f̃(P − Q))δε(K2)δε((P − K)2)

·δε((P − Q)2)P
1

P 2 [f(K)f̃(P − K)

−f̃(P )(1 + f(K) − f̃(P − K))]

where

G(Fey) =
k0

q0

G(Cou) =
(q0 − k0)2 + k2

0

2q0k0

Here use has been made of p0 = q0/2, which comes from
(P −Q)2 = 0. Making the change of variable P → P +K,
we extract the mass-singular part,

δ(P 2)
∫

d 4Kδ(K2)P
1

(P + K)2

= πδ(P 2)
∫

dk k2
∫

dk0 δ(K2)

·
∫ 1−εy

−1+εy

d(p̂ · k̂)
1

p0k0 − p · k

→ π

p
δ(P 2)

∫
dk k

∫
dk0 ε(p0k0)δ(K2) ln

1
εy

(B.1)

Using (7), cutting off the infrared region, k (≡ κz) ≥ εzκ,
and changing the integration variable suitably, we arrive at
the final form. As it should be, δΠ

(p), sing
Σ = Π

(p), sing
Σ Fey

−
Π

(p), sing
Σ Cou

is equal to −Πsing
V , which has been evaluated

in [4]. There is a missing term though in Π sing
V in [4],

− 32
3π

ααsκ
2(ñ(κ))2 ln

1
εy

∫ 1

εy

dz
1 − z

z

where κ = q0/2. The form for Π sing, being gauge inde-
pendent, reads (18) in the text.
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